防雷检测中接地电阻中的气象条件影响因素主要包括温度以及湿度等,目前我国并没有针对不同天气条件开展防雷检测明确规定,但是在实际检测的过程中,不能忽略其影响程度。土壤电阻率与相对湿度之间成反比关系,如果土壤中的相对湿度较高,则土壤电阻会下降,如果土壤中的温较高,则土壤电阻率也会出现下降的情况。由此可以看出,如果防雷检测接地电阻的外界环境发生变化,则土壤电阻率也会发生相应的变化,在防雷检测接地电阻测量的过程中,需要考虑这一影响因素。
正是因为以上原因,在实际防雷检测接地电阻检测的过程中,不能在阴雨天对其展开检测,这是土壤中的相对湿度较高,终的检测结果会出现一定误差。另外,也不可以在雨后土壤湿度大的地区展开检测,这种情况也会导致终的检测结果出现误差。例如,在给煤矿区域安装避雷装置的过程中,其中公共接地装置以及避雷针的使用正常,但是终防雷检测接地电阻的检测结果并不符合要求。导致这种情况出现的主要原因就是,在该地区,接地装置周围存在大量的沙石,沙石中的湿度较低,因此影响了终测量结果。针对这种情况,为了保证防雷检测接地电阻测量的准确性,则可以在沙石中混入一定量的盐,提升终检测结果的准确性。由此可以看出,在实际防雷检测接地电阻检測的过程中,为了保证防雷检测接地电阻检测的准确性,需要充分考虑气象条件的影响因素,终达到保证防雷检测接地电阻检测效果的目的。
建筑物防雷工程和防雷检测的必要性
据统计,我国平均每年因雷电造成上千人伤亡,约550人,财产损失为70-100亿元。雷电灾害带来的人员伤亡仅次于暴雨洪涝、气象地质灾害,被联合国列为“严重的十种自然灾害”。所以,防雷装置性能好坏,直接关系着防雷安全。
现代从防雷技术角度来说防雷设施包括外部防雷保护(建筑物或设施的直击雷防护)和内部防雷保护(雷电电磁脉冲的防护)两部分:
外部防雷系统主要是为了保护建筑物本身免受直接雷击引起火灾事故及人身安全事故;
而内部防雷系统则是为了防止雷电波侵入、雷击感应过电压以及系统操作过电压侵入设备造成的毁坏。
防雷装置主要由接闪器(避雷针、避雷带的统称)、引下线和接地极组成。
特别是接地极埋于地下,引下线又常常被雨淋风吹得,长年累月容易因锈蚀导致断裂、脱焊,如此一来,接闪器接到的雷电能量无法通过接地极进入到大地消耗掉,从而更加容易对建筑物和人员造成伤害。
外部防雷装置以避雷针、避雷带、避雷网、避雷线为主,其中避雷针是常见的直击雷防护装置。
当雷云放电接近地面时它使地面电场发生畸变,在避雷针的顶端,形成局部电场强度集中的空间,以影响雷电先导放电的发展方向,引导雷电向避雷针放电,再通过接地引下线和接地装置将雷电流引入大地,从而使被保护物体免遭雷击侵害。
智能防雷在线监测的目的和实用性:
1、 实时性。智能雷电防护方案是在既有方案之上的优化和提升。现有方案能够通过物联网技术、传感器技术及算法等实现动态防护和动态管理,能够对设备状态实时监测,不受设备运行情况和时间的限制,可以随时检测设备的运行状态,一旦设备出现缺陷,能及时发现并跟踪检测、处理,对保证电网安全更具意义。
2、 真实性。由于在线监测技术在输电线路设备运行电压和状态下的各项参数进行检测,检测结果符合实际情况,更加真实和。
3、 针对性更强。根据各项数据的变化来确定检修项目、内容和时间,检修目的明确。
4、 提高了设备供电可靠性。由于实行状态监测,减少了线路停电次数和时间,提高了供电可靠性,避免少供电损失,同时也提高了电力部门全员劳动生产率。输电线路在线监测技术的推广应用,对电力系统的安全运行起到了积极作用,供电部门积极推行状态检修,减轻了设备检修工作量,提高了电网运行的可靠性。但是,由于技术的复杂性和电气设备的多样性,尚有一些问题值得研究和商鹤。技术简述如下:
5、 低功耗技术:杆塔上对输电设备状态信息的参数采集常年24H不间断监测,工号成为系统功能实现和可靠运行的关键。因此,低功耗技术的成熟应用,能够减缓因为蓄电池、太阳能板供电等的依赖。
6、 传感器技术:在恶劣环境下,须保持数据采集精度及稳定性,才能够实现智能防护系统。这就要求传感器必须能够实现前端采集及嵌入式算法,能够根据现场监测的要求,量身定制不同功能的传感器,且在某些特殊要求下能够实现现场报警及管理;
7、 电磁兼容及防电涌设计:前端设备在复杂的用电环境下,随时都有可能遭遇电涌侵入及电磁辐射等干扰,需要通过屏蔽及抗干扰设计及防浪涌设计等来保障。